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Abstract

Mitogen-activated protein kinases (MAPKs) are en-
zymes that convert extracellular signals into various
outputs such as cell growth, differentiation and cell
death. Employing a model that describes a MAPK
cascade signal pathway we introduce a feedback con-
trol approach to regulate the MAPK dynamics via
an external input to the MAPK cascade. Numeri-
cal simulations shows the effectivity of the feedback
control laws proposed.
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1 Introduction

Control technology has been applied in a wide vari-
ety of industrial and domestic environments, improv-
ing performance, safety and efficiency [1]. Cellular
processes, a keystone in the field of biology, has been
only benefited recently from such technological ad-
vances [2]. Interesting and promising developments
are starting to take place both in terms of new al-
gorithms and new applications that have led to a
renewed interest in the application of systems and
control theory to molecular and cell-biology [3]. The
efforts in the control of metabolic processes reported
at different conferences [4] and special issues in inter-
disciplinary journals [5] are impressive indications of
this trend. The goals of feedback control in this kind
of systems may be to cause excitation or suppression
of oscillations, entrainment and synchronization, or
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transitions from chaotic to periodic oscillations and
vice versa [2,3,6,7].

In the recent years, considerable effort has
been directed toward the development of computer
models aimed at simulating the intracellular com-
plexity of a large number of metabolic processes [6,8].
In particular, intracellular signaling or signal trans-
duction, namely the mechanism by which extracellu-
lar signals are converted into cellular responses, has
attracted considerable attention. Molecules involved
in the pathways are usually multifunctional in sense
that they are generally involved in more than a sin-
gle pathway. Cells are able to receive many different
chemical signals from their surrounding, and have
the capability to react to signal pattern in an ap-
propriate way [6,8]. The signals are processed by
the intracellular signaling network, which is mainly
constructed by proteins which react with each other
[2,6]. Beside bacterial chemotaxis [9], calcium oscil-
lations [8,9], and cell-cycle control [6], the MAPK
cascade [10-14], a three molecule module present in
all eucaryotes, has become a model system for quan-
titative analysis of signaling pathways. Obviously,
developmental signalling events must be precisely
regulated. A signal that is produced in the wrong
time or place will lead to inappropriate developmen-
tal responses [6,7], which can be dangerous and cells
must be protected against this.

MAPK cascades have been implicated in a va-
riety of intercellular processes including regulation of
the cell cycle, apoptosis, cell growth and responses
to stress [10-14]. These molecules are of crucial im-
portance in the development of memory and wound
healing [13]. Abnormal changes in MAPK path-
way regulation often mediate various pathologies,
most notably cancer [11,14]. This central role of
MAPK mediated signal transduction in most reg-
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ulatory processes makes it an especially attractive
metabolic pathway for feedback control studies.

In this work, exploiting a signaling MAPK
pathway model we design a model-based feedback
control law for the purpose of controlling cell func-
tion regulated by the MAPK dynamics. Numerical
simulations on a MAPK cascade model shows the ef-
fectiveness of the control law proposed. This work
is organized as follows: In Section 2, we provide the
dynamical model of the MAPK cascade. In Section
3 we develop the model-based control approach to
regulate the MAPK dynamics. Numerical simula-
tions in sections 2 and 4 shows the uncontrolled and
controlled behavior respectively of the MAPK sig-
nal dynamics. Finally, the paper closes with some
concluding remarks in Section 5.

2 MAPK Signaling Cascade
Mechanism and Model

A very powerful device for regulation of metabolic
pathways is a cascade of interconvertible enzymes
[17]. In a cascade a target enzyme exists in two
forms: a catalytically active state ep and an inactive
(or less active) form e. These two forms can be in-
terconverted by the action of two modifier enzymes:
one that activates and another that inactivates. Re-
cently, genetic and biochemical analyses have iden-
tified the universally conserved mitogen- activated
protein (MAP) kinase cascade as one of the most
ubiquitous signal transduction systems [11,12,14].
Most of the intracellular portion of the signaling
pathway is a cascade of protein phosphorylations and
dephosphorylations (phosphorylations and dephos-
phorylations are nothing but structural changes).
Each step leads to activation or inhibition of further,
downstream events or feeds back on upstream events.
Every basic activity of the cell happens through sig-
naling. This pathway is activated after a variety of
cellular stimuli and regulates numerous physiologi-
cal processes, particularly the cell division cycle [13].

The MAPK sequential cascade of reactions
was initially speculated to serve as an amplifier of an
upstream receptor-ligand binding event [12]. More
recent analysis indicates that, in many cases, it acts
as a switch providing an almost threshold-like input-
output response to receptor activation, with a new
steady-state level of MAP kinase activity that is sub-
stantially higher than the original baseline level, if
the input stimulus is above of some threshold [14].
Operation as a switch in this manner could be useful
for regulating gene expression events required for a
cell decision to divide or differentiate, and this op-
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Figure 1: Reaction network in the MAPK cascade
model.

eration can be obtained as a module representing a
proportional control scheme in which variables are
modulated in response to the immediate difference
between a desired output and current output [16].
Interestingly, however, in other situations, this same
class of molecular network undergoes exact adapta-
tion or integral feedback control, behavior similar to
that of the bacterial chemotaxis pathway [9], with
MAP kinase activity proceeding through a transient
peak back to its original baseline level in response to
continuous ligand-receptor occupancy [16].

Three models of MAPK can be found in the
literature. Huang and Ferrell [17] developed a model
to describe MAPK activation in Xenopus oocytes,
they focused on the role of MAPK in all-or-none
decisions. Within a large model of second messen-
ger cascades in neurons, Bhalla and Iyengar [12] also
consider the MAPK module. They focus rather on
properties of the whole network like bistability and
oscillations than on features of small modules. An-
other model is described by Asthagiri and Laufen-
burger [11], where they illustrate how the MAPK
cascade shows adaptation.For our purposes, we con-
sider the simplest possible model as considered by
Shvartsman et al., [18]. The model of the MAPK
cascade consists of three enzymes, e1, e2, and e3 (1).
The three stages in the cascade model the sequential
activation of Raf, MAPK kinase (MEK), and MAPK
[18]. “Kinases” at each level of the cascade can be
in one of the two forms, “base” and “active,” which
are interconverted by two distinct enzymes. Active
forms of e1 and e2 catalyze forward reactions of the
following stages. In the model, the “phosphatases”
catalyzing reactions 2, 4, and 6 are constitutively ac-
tive [18]. The maximal rate of reaction 1 depends on
the magnitude of the input to the cascade (µ). The
phosphorylated form of e3 decreases the input to the
cascade reaction; this reflects the fact that forma-
tion of the signaling complex stimulating the input
to the cascade can be negatively regulated by the
active form of extracellular signal regulated kinase
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Table 1: MAPK model parameter values

b1 0.1 c3 0.01 e2 0.01
b2 0.1 d1 1.0 e3 0.01
b3 0.5 d2 1.0 τ1 1
c1 0.1 d3 1.0 τ2 1
c2 0.01 e1 0.1 τ3 1

(ERK) type 2 (ERK2) MAPK [11,18].
Let e1P , e2P and e3P denote the dimensionless

(scaled by the total amount of the enzyme) concen-
trations of the active (“phosphorylated”) form of the
enzymes. The MAPK cascade model is a connection
of three SISO systems given by [18],

dx1
dt

= − b1x1
c1 + x1

+
µ

1 + kxτ33

d1(1− x1)

e1 + (1− x1)

dx2
dt

= − b2x2
c2 + x2

+ xτ11
d2(1− x2)

e2 + (1− x2)
(1)

dx3
dt

= − b3x3
c3 + x3

+ xτ22
d3(1− x3)

e3 + (1− x3)

where x1 = e1P , x2 = e2P and x3 = e3P . bi and di are
equilibrium Michaelis constants and ci and ei maxi-
mum reaction velocities rescaled by the total amount
of enzyme at a given stage of the cascade. The input
to the signaling cascade is given by µ = µ0+G2RTC,
where µ0 denotes input to the signaling network, in-
dependent of endogenous ligand, and G2 quantifies
the efficiency with which occupied receptor stimu-
lates the input to the signaling cascade. Numerous
hormones and neurotransmitters mediate their phys-
iological actions by altering the phosphorylation of
specific proteins. RT is the total number of cell sur-
face receptors and C is the surface density of occu-
pied surface receptors [18].

Negative feedback coupled with kinetic time
lags can give rise to oscillatory behavior, i.e., pe-
riodic oscillations, even for fixed values of external
conditions [11,18]. Numerical simulations with data
given in Table 2.1 shown that as the parameter k in-
creases a Hopf bifurcation occurs at around k = 5.1
(2). However, oscillations in MAPK cascades do not
appear to occur naturally, thus, in order to assure
lack of oscillations in MAPK a feedback control law
is designed in next section.

3 Feedback Control of MAPK
Signalling

In this section we develop a robust feedback control
scheme to regulate the signal dynamics of MAPK.
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Figure 2: Uncontrolled behavior of the MAPK cas-
cade dynamics.

The control approach is based on the mathemati-
cal model that describes MAPK cascade dynamics.
The control objective is the regulation of the first
enzyme in the cascade cycle x1 about a constant ref-
erence value by manipulation of an external stimuli,
µ = u(t). Inputs can be delivered to the MAPK cas-
cade by different means, e.g., by integrins, one of the
numerous growth factor receptor systems, or ionizing
radiation [11,18]. Thus, the dynamics of first enzyme
can be written as

dx1
dt

= − b1x1
c1 + x1

+
1

1 + kxτ33
(2)

d1(1− x1)

e1 + (1− x1)
u(t)

The rationale behind the selection of x1 as the con-
trolled variable is that the first enzyme in the cas-
cade as a direct effect in the dynamical behavior of
the next enzymes x2 and x3.

Let x1,ref denote the reference value. The
problem is how to find the feedback law in order to
achieve the desired dynamic behavior for the first
enzyme in the MAPK cascade, x1

dx1
dt

= −'c(x1 − x1,ref ) (3)

where 'c > 0 is a closed-loop parameter. Notice
that the dynamics (3) is asymptotically stable about
the reference value x1,ref with 'c as the inverse of a
convergence time, i.e., τ−1c .

Our feedback control law is based on a match-
ing scheme. Provided that,

1 + kxτ33
e1 + (1− x1)

d1(1− x1)
6= 0 for all t > 0

which is evident since variables xi takes only nonneg-
ative values between {0-1} and k, e1, d1, τ3 > 0, ex-
act model matching between (2) and (3) is achieved
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by the following feedback function

u(t) = (1+kxτ33 )
e1 + (1− x1)

d1(1− x1)

·
b1x1
c1+x1−'c(x1 − x1,ref )

¸
(4)

This control law requires perfect knowledge of the
parameters. Due the uncertainty about the values
of the rate constants and kinetic values in metabolic
processes, the following assumptions are made for
control design purposes:

1. Estimates
©
k, e1, d1, b1, c1, τ3

ª
of the parame-

ters {k, e1, d1, b1, c1, τ3} are known. This is not
a serious restriction since is possible to get typ-
ical estimates of them.

2. The phosphorylated (“active”) form of the en-
zyme x1 is available for measurement. This is
a reasonable assumption, since current exper-
imental test measure the active forms of en-
zymes.

We can write the enzyme x1 dynamics as,

dx1
dt

= − b1x1
c1 + x1

+ η(x1, x2, u) +
1

1 + kxτ33
(5)

d1(1− x1)

e1 + (1− x1)
u(t)

where

η(x1, x2, u) = −
·

b1x1
c1 + x1

− b1x1
c1 + x1

¸
− 1

1+kx
τ3
3

d1(1−x1)
e1+(1−x1)−

1
1+kx

τ3
3

d1(1−x1)
e1+(1−x1)

u(t) (6)
is the model error function. Since the uncertain
term η, requires the perfect knowledge of parame-
ters {k, e1, d1, b1, c1, τ3} in order to get an estimated
signal (η) of η we introduce the following observer
[19,20],

dη

dt
= 'e(η − η) (7)

where 'e is an estimation design parameter. From
(5), we know that,

η =
dx1
dt

+
b1x1

c1 + x1
− 1

1 + kxτ33

d1(1− x1)

e1 + (1− x1)
u(t)

Therefore,

dη

dt
= 'e(

dx1
dt

+
b1x1

c1 + x1
− 1

1 + kxτ33

d1(1− x1)

e1 + (1− x1)

u(t)− η)

introduce the variable w
def
= '−1e η − x1. Then, the

estimator (7) can be realized as follows:

dw

dt
=

b1x1
c1 + x1

− 1

1 + kxτ33

d1(1− x1)

e1 + (1− x1)
u(t)− η

η = 'e(w + x1) (8)

By using the above estimation of the uncertain term,
an inverse-dynamics feedback function that leads to
the desired controlled dynamics of the active form of
enzyme x1 is given by

u(t) = −(1+kxτ33 )
e1 + (1− x1)

d1(1− x1)

"
η − b1x1

c1+x1
+

'c(x1 − x1,ref )

#
(9)

Thus, the feedback function is composed by the feed-
back function (9) and the modeling error estimator
(8).

Remark 1 The model-based control approach has
only two control design parameters, i.e., 'c and 'e.
The closed-loop parameter 'c can be chosen as the
inverse of the mean time of the open-loop dynamics.
On the other hand, the estimation parameter 'e > 0,
which determines the smoothness of the modeling er-
ror and the inverse of the time-derivative estimation,
can be chosen as 'e <

1
2'c [19,20].

Remark 2 To the best of our knowledge, only Son-
tag [21] has been considered feedback control stud-
ies for the MAPK cascade model. In Sontag´s paper
were derived small gain theorems with application in
MAPK cascade model.

Remark 3 The stability analysis of the closed-loop
systems is beyond of the scope of this paper. How-
ever, this can be borrowed with stability arguments
from singular perturbation theory [20].

4 Numerical Simulations
We have taken the following cases in order to illus-
trate the control performance: (i) regulation of the
oscillatory behavior to a constant reference value,
and (ii) enforcing of the oscillatory dynamics to a
desired controlled periodic behavior. Two motiva-
tions for considering constant and controlled peri-
odic references: (i) as in Sontag´s paper [21] we were
motivated by the problem of guaranteeing the non-
existence of oscillations in the MAPK signaling path-
way, and (ii) despite periodic oscillations are a suit-
able means for switching on different processes, the
physiological relevance of sustained oscillations in the
MAPK-cascade is not clear and experimentally only
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(i) Regulation to a constant reference

Figure 3: Regulation of the oscillatory behavior.

damped oscillations were shown [15]. If the damped
oscillations induced by the negative feedback loop
show only few periods and the steady-state is at a
very low activation level of MAPK , the dynamics
can be interpreted as adaptation [15]. Adaptation,
sometimes also referred as desensitization, seems to
be an important property of biological systems, be-
cause it allows organisms to have a similar function-
ality for a wide range of different environments [6].

In Figure 3-a we shown the time evolution of
the active form of enzyme x1 for case (i). It can be
seen that we can successfully perform the regulation
of the oscillatory behavior via the control law (8) and
(9). The control law is turn on at t = 150 units and
'c and 'e are set at 0.5 and 0.2 respectively. Fig-
ure 3-b shows the temporal evolution of the control
input. It can be seen from Figure 3 that in order to
regulate the oscillatory behavior to a constant ref-
erence value, the required control control input is a
step external input.

Figure 4-a shows the tracking of a sinusoidal
reference, i.e., case (ii). We can successfully perform
full tracking of a sinusoidal signal. In this case, 'c

and 'e are set at 0.1 and 0.025 respectively. It can
be seen from Figure 4-b that the control input has
a periodic behavior. This can be related to the ob-
servation made in numerous experimental and theo-
retical studies that forcing an oscillatory system by a
periodic input can readily produce a new periodic be-
havior [2,6]. behavior. The above simulation results
indicate good regulation and tracking performance
of the closed-loop system.

5 Conclusions

In this work, we have presented a model-based feed-
back control approach to regulate the MAPK dy-
namics. The significance of MAPK signaling dynam-
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Figure 4: Enforcing of a new periodic behavior.

ics stems from the crucial importance of this path-
way in the control of many functions in signal trans-
duction, such as stress-response, cell-cycle control,
cell-wall-construction, osmo-sensing, growth and dif-
ferentiation. The feedback control law proposed in
this work could be implemented experimentally in
the MAPK cascade via the introduction of plausible
external actions, such as ionizing radiation. In spite
that our results have been obtained for a MAPK
pathway model, we expect that the control approach
presented here could be used in similar models of
metabolic pathways.
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